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We describe a a portable container which allows specification of the probabilistic relations between
several variables. The applications motivating this work are mainly scientific inference problems.
The textual container should allow users (scientists) to maintain, annotate, edit, and exchange
definite models of their data. These specification documents can also be interpreted by inference
engines that can automatically infer variables when given the values of other variables. The
specification allows hierarchical composition of variables, permitting construction of complex and
versatile models from simple ones. Furthermore, special constructs allow easier description of
temporal and spatial patterns of dependence between random variables.

1 Analytic foundation

As stated above, our goal is to design an expressive language for capturing stochastic or uncertain
relations among a set of variables, particularly in support of the inference tasks associated with
pattern recognition in scientific data. At a minimum, we need to be able to describe random
vectors via a set of standard distributions, and allow transformations and compositions of these
variables. For example, a normal mixture is a composition of a discrete random variable with a
group of different normal variables.
One guide to this work has been the recent maturity of Bayes net methods for describing data (Pearl,
1988). This well-known formalism represents random variables as the vertices of a directed graph.
Lack of an edge between two vertices v1 and v2 implies a conditional independence relationship
between v1 and v2 given the rest of the variables. Our baseline required capability is easy to
capture in this notation; furthermore, many pattern recognition tasks such as inference in hidden
Markov models or Markov random field models may be captured in this notation.
A parallel line of work is in the area of stochastic grammars (Fu, 1974) and pattern theory (Grenan-
der, 1993). Such grammars model random variables via randomly chosen production rules, and,
properly extended, can be a more expressive notation for capturing pattern generation processes (Mjol-
sness, 1995).
A following influence, allowing us to concisely capture spatio-temporal relations, is to describe a
collection of random variables as a field over a suitable index set or domain. The best example of
a domain is the first n integers Zn, and its cyclic version Z/Zn. The usual set-theoretic operators
are permitted on domains, which allows building index sets for images via cartesian products. The
field is then a map from the domain to Rd, and generalizes the concept of random vector. Local
spatio-temporal dependences may now be specified by translating a template over the domain.

2 Implementation

There are two basic operations connected with such a stochastic model: sampling, and finding the
probability (or probability density) of a given set of variables. This means the setup is amenable to



Figure 1: Editing a hierarchical model in JUMBO

an object-oriented design in which variables are the objects supporting these two methods. Access
to the model is given by specifying its URI and giving the names of the variables to be sampled,
or the variable names and values if the probability is to be computed. As the “back-end” to this
system, we have written a library supporting these operations, suitable for linking with applications
needing to evaluate models.
The “front-end” must support browsing and editing. Although many textual representations can
capture the above structures, we have chosen XML, the emerging eXtensible Markup Language
standard. Using XML allows us to use off-the-shelf parsers to assist the computational engine, as
well as standard editors to form the side visible to scientific users. Figure 2 shows one such editing
interface, called JUMBO, with a mixture model from a science application highlighted. The model
is a set of three variables, each a normal mixture in two dimensions. The variables are encoded,
as described above, as a composition of a discrete distribution and several normal distributions.

3 Applications

We describe two applications of this system, the first to solar image analysis and the second to
clustering of genetic expression data. In the solar image analysis problem, we observe images of
the sun in several modalities, and from these images, we wish to segment the solar disk into region
types to explore the links between solar activity and climatic variability.
Many sets of such images are available. The set we describe here consists of magnetograms and
photograms of size 10242 taken since 1996 from the MDI (Michelson Doppler Imager) instrument
aboard the ESA/NASA SoHO satellite. The initial modeling problem is simply to define the
statistical distribution of the vector y of two observables for the three region types: sunspot,
faculae, and quiet sun. We have done this by fitting a normal mixture to distributions of pixels
in scientist-labeled images, obtaining models for P (y | spot), etc. See figure 2 for a scatterplot of
observations y, coded by region type, and a corresponding mixture for the sunspot model. Models
for all the classes may be conveniently encoded using the XML scheme we have described. It is
precisely such a model which is displayed in figure 1.
We have developed a GUI-driven system called StarTool for this type of image labeling (Turmon
et al. , 1997). Currently, the system accepts XML probability models which its engine uses to
produce labelings of single images, and time-series of labelings of many images. Because of the
editing capability described above, it is easy to allow scientists to browse and edit the XML model-
files from within the same GUI. This system has the clear advantage that for scientific analysis,
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Figure 2: SoHO/MDI observables, and data model

models of great complexity can be exchanged between scientists for analysis of images from other
instruments, allowing repeatability and objectivity of image-labelings once a modeling consensus
forms in the solar physics community. The next problem is to concisely express a Markov random
field prior model to account for the spatial dimension, as outlined above.
The second application is in genetic expression determination (Mjolsness (1999)). Here each ob-
servable is a measurement of the activity or ‘expression’ of a certain gene of the nematode worm
C. elegans in a given experiment. Each experiment in fact determines the activity of many genes,
and a collective picture of a gene’s behavior emerges as experiments are done over time for several
worms. In the data examined here, produced in Stuart Kim’s Stanford laboratory, 1244 genes were
examined over 68 experiments, and a type of hierarchical clustering was done in R68 to group sim-
ilar genes. For this data, it was found that a hierarchical mixture model is more informative about
the data than a flat mixture. Such a model is a finite mixture of normal mixtures, and therefore
captures information about variability at two scales within the gene sequence. This type of model
is again a natural candidate for the hierarchical decompositions supported by our language.
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